

Holomorphic Rank of Hypersurfaces with an Isolated Singularity

A. Lins Neto*

— Dedicated to the memory of R. Mañé

Abstract. Let V be a germ at $0 \in \mathbb{C}^n$, $n \geq 3$, of hypersurface with an isolated singularity at 0. In this paper we prove that the maximal number of germs of vector fields in $V^* = V - 0$, which are linearly independent in all points of V^* is two. In the cases n = 3, 4 and of quasi homogeneous hypersurfaces $(\forall n \geq 3)$, we prove that this number is one.

Keywords: Hypersurfaces, Rank, Vector fields.

1. Introduction

In this paper we consider the problem of finding the maximal number of holomorphic vector fields in a singular hypersurface with isolated singularity, which are linearly independent in all points.

Let M be a complex manifold of dimension m and X_1, \ldots, X_k be holomorphic vector fields in M. We say that they are linearly independent (briefly l.i.) if for all $p \in M$ the vectors $X_1(p), \ldots, X_k(p)$ are linearly independent. The rank of M (denoted by $\operatorname{Rank}(M)$) is the maximum number of holomorphic l.i. vector fields in M. So, for instance $\operatorname{Rank}(M) \geq 1$, if there exists a holomorphic vector field in M without singularities. More specifically we will consider a germ at $0 \in \mathbb{C}^{n+1}$ of a analytic subset.

Definition 1. Let V be a germ at $0 \in \mathbb{C}^{n+1}$ of a hypersurface with an isolated singularity at 0. Let V(U) be a representative of V in a

Received 22 November 1996.

^{*}This research was partially supported by Pronex.

neighborhood U of 0. We denote by $V^*(U)$ the set of smooth points of V(U) (in our case $V^*(U) = V(U) - \{0\}$). The rank of V at 0 is by definition

$$Rank(V) = max\{Rank(V^*(U)); V(U) \text{ is a representative of V}\}$$

Our main results are the following:

Theorem 1. Let V be a germ at $0 \in \mathbb{C}^{n+1}$ of hypersurface with an isolated singularity at 0. Then $1 \leq \operatorname{Rank}(V) \leq 2$. If V is quasi homogeneous, or if $n \leq 3$ then $\operatorname{Rank}(V) = 1$.

We would like to observe that recently J. Seade proved that V^* admits n C^{∞} vector fields which are linearly independent (over \mathbb{C}) in all points of V^* ([Se]).

One of the main tools in the proof of Theorem 1 is the following:

Theorem 2. Let X_1, \ldots, X_k be holomorphic vector fields in a complex manifold M of dimension $m \geq k$, and let $D(X_1, \ldots, X_k) = D = \{p \in M; X_1(p), \ldots, X_k(p) \text{ are linearly dependent}\}$. If D is not empty, then every irreducible component of D has dimension $\geq k-1$.

In $\S 2$ we will prove Theorem 2 and in $\S 3$ Theorem 1.

Theorem 1 motivates the following problems:

Problem 1. Generalize theorem 1, or give a counter example, for $n \geq 4$.

Problem 2. Calculate the rank of germs of analytic sets of codimension bigger than one, with an isolated singularity. The same for sets of codimension one, but with non isolated singular set.

I would like to thank J. Seade ,who motivated me in the subject, for helpful conversations.

2. Proof of Theorem 2

Let X_1, \ldots, X_k be holomorphic vector fields in M and

$$D = D(X_1, \dots, X_k) = \{ p \in M; X_1(p), \dots, X_k(p) \text{ are l.d.} \},$$

(where l.d. means "linearly dependent").

Suppose $D \neq \emptyset$ and let us prove that all components of D have dimension $\geq k-1$. It is enough to prove that for any $p \in D$ there

exists a neighborhood V of p such that $\dim(D \cap V) \geq k-1$. Fix $p \in D$. By taking a holomorphic coordinate system around p, we can suppose that $p = 0 \in \mathbb{C}^m$ and that X_1, \ldots, X_k are holomorphic vector fields in a neighborhood of 0.

Since $X_1(0), \ldots, X_k(0)$ are l.d., the subspace of \mathbb{C}^m generated by them,

$$(X_1(0),\ldots,X_k(0))\subset (e_1,\ldots,e_{k-1})=E,$$

where $\{e_1, \ldots, e_m\}$ is a basis of \mathbb{C}^m . Let $r = \dim(X_1(0), \ldots, X_k(0))$.

1st case: r = k - 1

In this case we can suppose that $(X_1(0), \ldots, X_{k-1}(0)) = E$, so that for x in a neighborhood V of 0 the set $\{X_1(x), \ldots, X_{k-1}(x), e_k, \ldots, e_m\}$ is a basis of \mathbb{C}^m . On the other hand we can write $X_k(x) = X_k'(x) + X_k''(x)$, where $X_k'(x) \in (X_1(x), \ldots, X_{k-1}(x))$ and $X_k''(x) \in (e_k, \ldots, e_m)$. Now, observe that $D \cap V = \{x; X_k''(x) = 0\}$. Therefore $D \cap V$ is defined by m - k + 1 equations, which implies that $\dim(D \cap V) \geq k - 1$.

2nd case: r < k - 1

We can suppose that

$$(X_1(0),\ldots,X_k(0))=(X_1(0),\ldots,X_r(0))=(e_1,\ldots,e_r).$$

Observe that for $\lambda \neq 0$ the vectors

$$X_1(0), \ldots, X_r(0), X_{r+1}(0) + \lambda e_{r+1}, \ldots, X_{k-1}(0) + \lambda e_{k-1}$$

are l.i., whereas the vectors

$$X_1(0), \ldots, X_r(0), X_{r+1}(0) + \lambda e_{r+1}, \ldots, X_{k-1}(0) + \lambda e_{k-1}, X_k(0)$$

are l.d.. Let V be a neighborhood of 0 and $\epsilon > 0$ be such that for $x \in V$ and $0 < |\lambda| < \epsilon$, the vectors

$$X_1(x), \ldots, X_r(x), X_{r+1}(x) + \lambda e_{r+1}, \ldots, X_{k-1}(x) + \lambda e_{k-1}$$

are l.i.. Let

$$D(\lambda) = \{ x \in V; \ X_1(x), \dots, X_r(x), X_{r+1}(x) + \lambda . e_{r+1}, \dots, X_{k-1}(x) + \lambda . e_{k-1}, X_k(x) \text{ are l.d. } \}.$$

It follows from the first case that all components of $D(\lambda)$ have dimension $\geq k-1$ for $0 < \lambda < \epsilon$. By a classical result on hyperplane sections, we must have $\dim(D \cap V) \geq k-1$.

3. Proof of Theorem 1

3.1 – Preliminary results.

Let V be a germ at $0 \in \mathbb{C}^{n+1}$ of hypersurface with an isolated singularity at 0. Let f be a germ at $0 \in \mathbb{C}^{n+1}$ of holomorphic function with an isolated singularity at 0 such that $V = f^{-1}(0)$. We will use the following notations:

- $1 f_j$ for the partial derivative $\partial f/\partial x_j$, $j = 1, \ldots, n+1$.
- $2 e_j$ for the vector $\partial/\partial x_j$, $j = 1, \ldots, n+1$, where (x_1, \ldots, x_{n+1}) is a fixed coordinate system around $0 \in \mathbb{C}^{n+1}$.
- $3 \wedge$ for the exterior product of forms or vectors.

Let us fix representatives of V and f in a polydisc $P^{n+1} = P$ around 0, which we will call still V and f. We will use the notations $V^* = V \setminus \{0\}$, $P^* = P \setminus \{0\}$, $\mathcal{O}(V^*)$ for the ring of holomorphic functions on V^* and $\chi(V^*)$ for the set of holomorphic vector fields on V^* .

Lemma 1. If $n \geq 2$, then any vector field $X \in \chi(V^*)$ can be extended to a holomorphic vector field \tilde{X} on P. The vector field \tilde{X} must satisfy the following relations:

- a) $\tilde{X}(f) = g.f$, where g is holomorphic on P.
- b) $\tilde{X}(0) = 0$.

Proof. It is well known that any $h \in \mathcal{O}(V^*)$ can be extended to a holomorphic function \tilde{h} on P (cf. [G]). Denote by $x = (x_1, \ldots, x_{n+1})$ a coordinate system in \mathbb{C}^{n+1} and set

$$X_j = X(x_j \mid_{V^*}) \in \mathcal{O}(V^*), \quad j = 1, \dots, n+1$$

Let $h_j \in \mathcal{O}(P)$ be a holomorphic extension of X_j , $j = 1, \ldots n + 1$. It is not difficult to see that the vector field $\tilde{X} = \sum_{j=1}^{n+1} h_j.e_j$ is a holomorphic extension of X.

Let us prove a). Observe first that \tilde{X} is tangent to V^* . This implies

that the function $h = \tilde{X}(f) = \sum_{j=1}^{n+1} f_j . h_j$ vanishes on V^* . Since f is irreducible we must have $\tilde{X}(f) = g.f$ for some $g \in \mathcal{O}(P)$.

Let us prove b). Suppose by contradiction that $\tilde{X}(0) \neq 0$. In this case, after a change of variables near 0 we can suppose that $\tilde{X} = e_1$. From a) we get $\partial f/\partial x_1 = \text{g.}f$. As the reader can check easily, this implies that the x_1 -axis is contained in the singular set of V (unless 0 is not a singular point of V), which is a contradiction.

Corollary 1. Let $V \subset \mathbb{C}^{n+1}$, be as above, where $n \geq 2$. Then $\operatorname{Rank}(V) \leq 2$.

Proof. Let X_1, X_2, X_3 be vector fields in $\chi(V^*)$. It follows from Lemma 1 that they can be extended to holomorphic vector fields on P, which we call still X_1, X_2, X_3 , and such that $X_j(0) = 0, \ j = 1, 2, 3$. Since $0 \in D(X_1, X_2, X_3)$ we get that $\dim(D(X_1, X_2, X_3)) \geq 2$, so that $\dim(D(X_1, X_2, X_3) \cap V) \geq 1$, because $\dim(V) = n$. This implies that the vector fields cannot be l.i. on V^* .

Now we consider the case of vector fields which have f as first integral.

Definition 2. We say that X is a first integral for f if X(f) = 0. We will set

$$\mathcal{I}(V) = \{Y \in \chi(V^*) ; Y \text{ can be extended to a first integral } \tilde{Y} \text{ of } f \}$$

Corollary 2. Let $X, Y \in \mathcal{I}(V)$. Then X and Y are not l.i. on V^* .

Proof. Let \tilde{X} and \tilde{Y} be extensions of X and Y respectively, which are first integrals of f. Since $\tilde{X}(f) = \tilde{Y}(f) = 0$, \tilde{X} and \tilde{Y} are tangent to the level hypersurfaces of f, $f^{-1}(c)$, $c \in \mathbb{C}$, small.

Since $0 \in D(\tilde{X}, \tilde{Y})$, we get that $D(\tilde{X}, \tilde{Y})$ contains a non constant holomorphic curve γ such that $\gamma(0) = 0$. If $\gamma \subset V$ we are done. Suppose $\gamma \not\subset V$. In this case γ cuts the hypersurfaces $f^{-1}(c)$ for small |c| > 0. Since \tilde{X} and \tilde{Y} are both tangent to these hypersurfaces we get that $\dim(D(\tilde{X}, \tilde{Y}) \cap f^{-1}(c)) \geq 1$, for small |c| > 0. This implies that $\dim(D(\tilde{X}, \tilde{Y})) \geq 2$. Therefore $\dim(D(\tilde{X}, \tilde{Y}) \cap V) \geq 1$, which implies the Corollary.

Lemma 2. $Rank(V) \ge 1$.

Proof. Let us suppose first that n is odd, so that n+1=2k. In this case the vector field X on P defined by

$$X = f_2.e_1 - f_1.e_2 + \dots + f_{2k}.e_{2k-1} - f_{2k-1}.e_{2k} = \sum_{j=1}^{k} (f_{2j}.e_{2j-1} - f_{2j-1}.e_{2j})$$

is tangent to V (because X(f)=0) and in some neighborhood U of 0 it vanishes only at 0. This proves the lemma in this case.

Let us suppose now that n is even, so that n+1=2k+1. It is well known that there exists a hyperplane E through $0 \in \mathbb{C}^{n+1}$ such that 0 is an isolated singularity of the restriction $f|_{P\cap E}$. After a linear change of variables we can suppose that $E=\{x_{2k+1}=0\}$. Consider the vector field

$$X = \sum_{j=1}^{k} (f_{2j}.e_{2j-1} - f_{2j-1}.e_{2j})$$

Since X(f)=0, X is tangent to V. It is enough to prove that for some neighborhood U of 0 we have $\mathrm{Sing}(X)\cap V\cap U=\{0\}$. Suppose by contradiction that X vanishes in points of V^* arbitrarily near 0. This implies that $V\cap\mathrm{Sing}(X)$ contains a non constant holomorphic curve $\gamma(t)=(x_1(t),\ldots,x_{2k+1}(t))$ such that $\gamma(0)=0$. Now, $X(\gamma(t))=0$ implies that $\partial f/\partial x_j(\gamma(t))\equiv 0$ for all $j=1,\ldots,2k$. Since $f(\gamma(t))\equiv 0$ we get

$$0 \equiv \sum_{j=1}^{2k+1} f_j(\gamma(t)) \cdot x'_j(t) = f_{2k+1}(\gamma(t)) \cdot x'_{2k+1}(t)$$

This implies that $x'_{2k+1}(t) \equiv 0$, because 0 is an isolated singularity for f. It follows that the curve γ is contained in the hyperplane $\{x_{2k+1} = 0\} = E$, which is a contradiction, because 0 is an isolated singularity for $f \mid_{E \cap P}$ and f_1, \ldots, f_{2k} vanish along γ .

In the next results we will use the so called "De Rham's division theorem", which we state bellow (cf. [M]).

De Rham's division theorem. Let $0 \in P$ be a polydisk in \mathbb{C}^m and ω be a holomorphic 1-form with an isolated singularity at 0. If η is a

holomorphic p-form in P, $1 \le p \le m-1$, such that

$$\omega \wedge \eta = 0$$

then there exists a holomorphic (p-1)-form β such that

$$\eta = \omega \wedge \beta$$

As a consequence we obtain the following:

Lemma-3. Let $V \subset P \subset \mathbb{C}^{n+1}$ and f be as before and η be a holomorphic p-form on P, where $1 \leq p \leq n-1$. Then $\eta \mid_{V_*} = 0$ if, and only if,

$$\eta = df \wedge \theta + f.\mu$$

where θ is a holomorphic (p-1)-form and μ is a holomorphic p-form.

Proof. It is not difficult to see that $\eta = df \wedge \theta + f \cdot \mu$ implies that $\eta \mid_{V*} = 0$. We leave the proof for the reader.

Let us suppose that $\eta\mid_{V^*}=0$. Fix $x\in V^*$. It follows from $\eta\mid_{V^*}=0$ that $df_x\wedge\eta_x=0$, so that $df\wedge\eta=f.\alpha$, for some (p+1)-form α . This implies that $df\wedge\alpha=0$, and so by De Rham's Theorem we have that $\alpha=df\wedge\beta$, for some p-form β , because $p+1\leq n$. From this we get $df\wedge(\eta-f.\beta)=0$. Again by De Rham's Theorem we get $\eta=df\wedge\theta+f.\beta$, for some (p-1)-form θ .

Corollary. Let $V \subset P$ and f be as before. Let X and Y be holomorphic vector fields on P, tangent to V^* , and $\Omega = dx_1 \wedge \cdots \wedge dx_{n+1}$. Then

$$i_X i_Y (\Omega) = df \wedge \theta + f.\mu$$

where θ is a (n-2)-form and μ a (n-1)-form.

Proof. Immediate from the fact that $i_X i_Y (\Omega) |_{V^*} = 0$.

Lemma 4. Let $0 \in V \subset P \subset \mathbb{C}^{n+1}$ and V^* be as before. If $n \geq 3$ then $H^1(V^*, \mathcal{O}) = 0$.

Proof. Let $U_j = \{x \in P; \ f_j(x) \neq 0\}$ and $V_j = U_j \cap V^*, \ 1 \leq j \leq n+1$ and consider the coverings $\mathcal{U} = (U_j)_{1 \leq j \leq n+1}$ and $\mathcal{V} = (V_j)_{1 \leq j \leq n+1}$ of P^* and V^* respectively. Since the $U_{j's}$ and $V_{j's}$ are Stein \mathcal{U} and \mathcal{V} are Leray coverings, and so it is enough to prove that $H^1(\mathcal{V}, \mathcal{O}) = 0$. We will set $V_{ij} = V_i \cap V_j, \ V_{ijk} = V_i \cap V_j \cap V_k, \ U_{ij} = U_i \cap U_j \text{ and } U_{ijk} = U_i \cap U_j \cap U_k.$

Let $\mathcal{G}=(g_{ij})_{V_{ij}}$ be a cocycle in $C^1(\mathcal{V},\mathcal{O})$. Since the $U_{j's}$ are Stein we can extend g_{ij} to $\tilde{g}_{ij} \in \mathcal{O}(U_{ij})$ (cf.[G]). Consider the coboundary $\mathcal{G}=(g_{ijk}=\tilde{g}_{ij}+\tilde{g}_{jk}+\tilde{g}_{ki})_{U_{ijk}}$ in $C^2(\mathcal{U},\mathcal{O})$. Now, $g_{ijk}\mid_{V_{ijk}}=0$, so that $g_{ijk}=f.h_{ijk}$, where $\mathcal{H}=(h_{ijk})_{U_{ijk}}$ is a cocycle in $H^2(\mathcal{U},\mathcal{O})$. Since $n\geq 3$ we have $H^2(P^*,\mathcal{O})=0$ (cf.[F]), and so $\mathcal{H}=\delta(\mathcal{K})$ for some $\mathcal{K}\in C^1(\mathcal{U},\mathcal{O})$, which means that $h_{ijk}=k_{ij}+k_{jk}+k_{ki}, \, k_{ij}\in\mathcal{O}(V_{ij})$. This implies that $\mathcal{L}=(l_{ij}=\tilde{g}_{ij}-f.k_{ij})_{V_{ij}}$ is a cocycle in $C^1(\mathcal{U},\mathcal{O})$. On the other hand, $H^1(P^*,\mathcal{O})=0$, and so $\mathcal{L}=\delta(\mathcal{M})$, for some $\mathcal{M}=(m_j)_{U_j}\in C^0(\mathcal{U},\mathcal{O})$. If we set $\mathcal{N}=(n_j=m_j|_{V_j})_{V_j}$, then it is not difficult to see that $\mathcal{G}=\delta(\mathcal{N})$. This proves Lemma 4.

Lemma 5. Let V and V^* be as before. If $n \geq 2$ then there exists a holomorphic n-form ν on V^* such that $\nu_p \neq 0 \ \forall p \in V^*$.

Remark. It is possible to prove that ν extends to P if, and only if, 0 is a smooth point of V.

Proof of Lemma 5. Let us consider the coverings $\mathcal{U}=\{U_j;\ j=1,\ldots,n+1\}$ and $\mathcal{V}=\{V_j;\ j=1,\ldots,n+1\}$, used in the proof of Lemma 4. Let ν_j be the n-form in U_j defined by $\nu_j=(f_j)^{-1}\ i_{e_j}(\Omega)$, where $\Omega=dx_1\wedge\cdots\wedge dx_{n+1}$. We have,

$$\Omega = f_j^{-1}.dx_1 \wedge \cdots \wedge dx_{j-1} \wedge df \wedge \cdots \wedge dx_{n+1} = df \wedge \nu_j$$

From the above relation we get that $df \wedge (\nu_i - \nu_j) = 0$ on $U_i \cap U_j$, and so $\nu_i \mid_{V_i \cap V_j} \equiv \nu_j \mid_{V_i \cap V_j}$. This implies that we can define a n-form ν on V^* such that $\nu \mid_{V_j} = \nu_j$. We leave for the reader the proof that ν does not vanishes on V^* .

Corollary. Let $X, Y \in \chi(P)$ be tangent to V and θ, μ be such that

$$i_X i_Y (\Omega) = df \wedge \theta + f.\mu$$

where $\Omega = dx_1 \wedge \cdots \wedge dx_{n+1}$. Then

$$\theta \mid_{V^*} = i_X i_Y (\nu)$$

where ν is as in Lemma 5.

Proof. Since X and Y are tangent to V we have X(f)=g.f and Y(f)=h.f, $g,h \in \mathcal{O}(P)$. Now for $j=1,\ldots,n+1$ we have $\Omega=df \wedge \nu_j$ (see the proof of Lemma 5), so that

$$i_Y (\Omega) = \text{h.f.} \nu_j - \text{df} \wedge (i_Y \nu_j) \Rightarrow$$

$$i_X i_Y (\Omega) = \text{h.f.} (i_X \nu_j) - \text{g.f.} (i_Y \nu_j) + \text{df} \wedge (i_X i_Y \nu_j)$$

This implies that on V we have

$$df \wedge \theta = df \wedge (i_X i_Y \nu_j) \implies df \wedge (\theta - i_X i_Y (\nu_j)) = 0$$

Since $\nu\mid_{V_j}=\nu_j$, it follows from the above relation that $\theta\mid_{V^*}=i_X\;i_Y\;(\nu)$, as we wished. \Box

3.2 - Proof of Theorem 1 in the cases n=2 and n=3

3.2.1 – Proof of Theorem 1 in the case n=2.

Let $X, Y \in \chi(V^*)$ and suppose by contradiction that they are l.i. on V^* . It follows from Lemma 1 that X and Y extend to holomorphic vector fields on P, which we call still X and Y. Since X(0)=Y(0)=0, we get that $0 \in D(X,Y)$, and so D(X,Y) contains some non constant holomorphic curve $\gamma(t)$ such that $\gamma(0)=0$. Observe that the curve $\gamma \not\subset V$.

Now consider the 1-form i_X i_Y (Ω) where $\Omega = dx_1 \wedge dx_2 \wedge dx_3$. It follows from the Corollary of Lemma 3 that there exists a holomorphic function g and a 1-form μ such that

$$i_X i_Y (\Omega) = g \cdot df + f \cdot \mu$$
 (1)

Assertion- $g(0) \neq 0$ - In fact, it follows from the Corollary of Lemma 5 that $g \mid_{V^*} = i_X i_Y (\nu)$, where ν is as in Lemma 5. This implies that $\forall x \in V^*$ we have $g(x) \neq 0$, because X and Y are l.i. on V^* . It follows that $g(0) \neq 0$, because g(0) = 0 would imply that $g^{-1}(0) \cap V^* \neq \emptyset$.

Now, X and Y are l.d. along γ , and so (1) implies that

$$g_{\gamma} \cdot df_{\gamma} + f_{\gamma} \mu_{\gamma} = i_{X_{\gamma}} \ i_{Y_{\gamma}} \ \Omega = 0 \tag{2}$$

If we set $F(t) = f(\gamma(t))$, $G(t) = g(\gamma(t))$, we get from (2) that,

$$G(t) F'(t) = G(t) df_{\gamma(t)} \cdot \gamma'(t) = -F(t)\mu_{\gamma(t)} \cdot \gamma'(t) = F(t) k(t)$$
 (3)

Since $G(0) \neq 0$ we can divide both members of (3) by G(t) (for $|t| < \epsilon, \epsilon$ small), getting F'(t) = h(t) F(t), where h(t) = k(t)/G(t). It follows that

$$F(t) = F(0) \exp(\int_0^t h(s) \ ds) = 0$$

so that the curve $\gamma \subset V$, which is a contradiction.

3.2.2 – Proof of Theorem 1 in the case n=3.

Let $X, Y \in \chi(V^*)$ and suppose by contradiction that they are l.i. on V^* . The idea is to prove that there exists $Z \in \chi(P)$ such that Z(f) = 1+g.f, where $g \in \mathcal{O}(P)$, which is not possible if 0 is singular point of f.

As before consider the 1-form i_X i_Y (Ω) where $\Omega = dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4$. Let θ and μ be such that i_X i_Y $(\Omega) = df \wedge \theta + f.\mu$. Set $\theta = \sum_{i=1}^4 \theta_i.dx_i$, and for $p \in P$, $K_p = \ker(\theta_p)$.

Assertion 1. $\forall p \in V^*$ we have $\theta_p \neq 0$ and $K_p \perp T_p(V^*)$ (where \perp means transversal), so that $df_p \wedge \theta_p \neq 0$.

Proof. It follows from the Corollary of Lemma 5 that $\theta \mid_{V^*} = i_X i_Y (\nu)$. Since X and Y are l.i. on V^* this implies that $\forall p \in V^*$ we have $\theta_p \neq 0$ and that $K_p \cap T_p V^*$ is the subspace of $T_p V^*$ generated by X(p) and Y(p). Therefore $K_p \perp T_p(V^*)$ as we wished.

Assertion 2. There exist functions $Z_1, \ldots, Z_4 \in \mathcal{O}(V^*)$ such that

$$\sum_{i=1}^{4} f_i . Z_i = 1 \text{ and } \sum_{i=1}^{4} \theta_i . Z_i = 0$$

This means in other words that the vector field Z defined along V^* by $Z = \sum_{i=1}^4 Z_i.e_i$ satisfies the following relations

$$i_Z(df) = 1$$
 and $i_Z \theta = 0$

This will imply the result, because if we extend the functions $Z_{i's}$ to functions $h_1, \ldots, h_4 \in \mathcal{O}(P)$ then we get a vector field $W = \sum_{i=1}^4 h_i . e_i$ on P such that $i_W(df) = 1 + g.f$, as desired.

Proof of assertion 2. For all $p \in V_j$ we have $df_p \wedge \theta_p \neq 0$. This implies locally the existence of the vector field Z, so that there is a covering

 $W = \{W_{\alpha}; \ \alpha \in A\}$ of V^* by open sets and a collection $\{Z_{\alpha}\}_{\alpha \in A}$ of vector fields such that for all $\alpha \in A$

$$i_{Z_{\alpha}}(df) = 1$$
 and $i_{Z_{\alpha}}(\theta) = 0$

Let $\alpha, \beta \in A$ be such that $W_{\alpha,\beta} = W_{\alpha} \cap W_{\beta} \neq \emptyset$ and consider $Z_{\alpha,\beta} = Z_{\beta} - Z_{\alpha}$. We have $i_{Z_{\alpha,\beta}} \text{df} = 0$ and so $Z_{\alpha,\beta} \in \chi(W_{\alpha,\beta})$, that is, it is tangent to V^* . Since $i_{Z_{\alpha,\beta}} \theta = 0$ and $\theta \mid_{V^*} = i_X i_Y(\nu)$ we get that

$$Z_{\alpha,\beta} = g_{\alpha,\beta}.X + h_{\alpha,\beta}.Y$$
 ,where $g_{\alpha,\beta}$ and $h_{\alpha,\beta} \in \mathcal{O}(W_{\alpha,\beta})$

Now, since X and Y are l.i., the collections $\{g_{\alpha,\beta}\}_{W_{\alpha,\beta}\neq\varnothing}$ and $\{h_{\alpha,\beta}\}_{W_{\alpha,\beta}\neq\varnothing}$ are cocycles in $C^1(\mathcal{W},\mathcal{O})$. Hence by Lemma 4 they are coboundaries, and so there exist collections $\{g_{\alpha}\}_{W_{\alpha}}$ and $\{h_{\alpha}\}_{W_{\alpha}}$ where $g_{\alpha},h_{\alpha}\in\mathcal{O}(W_{\alpha})$ such that

$$g_{\alpha,\beta} = g_{\beta} - g_{\alpha}$$
 and $h_{\alpha,\beta} = g_{\beta} - g_{\alpha}$

This implies that $Z_{\alpha} - g_{\alpha} \cdot X - h_{\alpha} \cdot Y = Z_{\beta} - g_{\beta} \cdot X - h_{\beta} \cdot Y$ on $W_{\alpha,\beta}$, so that we can define Z along V^* by

$$Z \mid_{W_{\alpha}} = Z_{\alpha} - g_{\alpha}.X - h_{\alpha}.Y$$

It is not difficult to see that $i_Z(df)=1$ and $i_Z(\theta)=0$, which proves assertion 2.

Remark. The above argument could be applied in the general case, $n \geq 4$, if we could obtain the form θ in such a way that for any $p \in V^*$ the equations $i_{Z(p)}(df) = 1$ and $i_{Z(p)}(\theta) = 0$ were solvables, for some $Z(p) \in T_pV^*$. In this point we have used that θ is a 1-form if n = 3.

3.3 - Proof of Theorem 1 in the quasi homogeneous case

In this section we will suppose that V is quasi homogeneous, that is $V = f^{-1}(0)$, where f is quasi homogeneous. We say that $f: \mathbb{C}^m \to \mathbb{C}$ is quasi homogeneous if there are $k_1, \ldots, k_m, k \in \mathbb{N}$ such that $\forall t \in \mathbb{C}$ and $\forall (x_1, \ldots, x_m) \in \mathbb{C}^m$ we have

$$f(t^{k_1}.x_1,\ldots,t^{k_m}.x_m) = t^k.f(x_1,\ldots,x_m)$$
 (1)

It is not difficult to see that a function f which satisfies condition (1) must be a polynomial. The following result, due to K. Saito, is known:

Saito's Theorem (cf. [S]). Let f be a germ at $0 \in \mathbb{C}^m$ of holomorphic function, with an isolated singularity at 0. Then the following are equivalent:

- (a) There exists a coordinate system (x_1, \ldots, x_m) around 0, such that f in this coordinate system is a germ of a quasi homogeneous polynomial.
- (b) There exists a germ of holomorphic vector field Z such that Z(f) = f. Moreover the coordinate system in (a) can be chosen in such a way that the vector field Z is linear and diagonal with all eigenvalues rational and positive.

For instance if f satisfies a relation like in (1) then the vector field Z can be chosen as $\sum_{i=1}^{m} \lambda_j . x_j . e_j$ where $\lambda_j = k_j / k$. Observe that if Z' = Z + X, where X is a first integral of f, then Z'(f) = f.

From now we fix the quasi homogeneous polynomial f in \mathbb{C}^m , where m = n + 1, with an isolated singularity at 0.

Given a neighborhood U of 0 and two holomorphic vector fields $X,Y \in \chi(U \cap V^*)$ we will say that they are l.d., if D(X,Y) contains a non constant holomorphic curve $\gamma \subset V$ such that $\gamma(0) = 0$. Two germs X and Y of holomorphic vector fields at $0 \in V$ will be l.d. if they have representatives $\tilde{X}, \tilde{Y} \in \chi(U \cap V)$ which are l.d. (for some U). If they have representatives $\tilde{X}, \tilde{Y} \in \chi(U \cap V)$ which are l.i. in $U \cap V^*$ then we will say that they are l.i. on V.

We will use the following notations:

 $\chi_m = \text{ the set of germs of holomorphic vector fields at} 0 \in \mathbb{C}^m$ $\chi_{V^*} = \text{ the set of germs of holomorphic vector fields at} 0 \in V$

 $\mathcal{D}(V) = \{X \in \chi_{V^*} \ ; \forall Y \in \chi_{V^*} \ \text{then} \ X \ \text{and} \ Y \ \text{are l.d.} \}$

Lemma 6. Let X, Y, A and B be germs of holomorphic vector fields at $0 \in V$, such that X and Y are l.i. on V. There exists $\epsilon > 0$ such that if $|s|, |t| < \epsilon$, then X + s.A and Y + t.B are l.i. on V.

Proof. Let us consider representatives $\tilde{X}, \tilde{Y}, \tilde{A}$ and \tilde{B} of the germs

defined in a ball U = B(0,r) around 0, in such a way that \tilde{X} and \tilde{Y} are l.i. on $U \cap V^*$. Consider extensions of these vector fields to a neighborhood U of $0 \in \mathbb{C}^{n+1}$, which we call again X,Y,A and B. Set $X_s = X + s.A$, $Y_t = Y + t.B$ and $D(s,t) = D(X_s,Y_t)$. Observe that $A = \{(p,s,t) \in U \times \mathbb{C}^2; p \in D(s,t)\}$ is an analytic subset of $U \times \mathbb{C}^2$. Since X and Y are l.i. on V, D(0,0) is a curve passing through 0 and such that $D(0,0) \cap V^* = \emptyset$. On the other hand, if the Lemma was false, there would exist sequences $(r_n = (s_n,t_n))_n$ and $(p_n)_n$, such that $\lim_n r_n = 0$, $p_n \in V^* \cap D(r_n)$ and $|p_n| = \epsilon$ for some small $\epsilon > 0$. We can assume that $(p_n)_n$ converges to some $p \in V^*$. By continuity, it follows that $p \in D(0,0) \cap V^*$, which is a contradiction.

Lemma 7. Let f be as before and $Z \in \chi_m$ be such that Z(f) = u.f, where u is a unity (that is $u(0) \neq 0$). Then $Z|_{V^*} \in \mathcal{D}(V)$.

Proof. Dividing Z by u if necessary, we can suppose that u=1. Let $\tilde{X} \in \chi_{V_*}$ and let us prove that \tilde{X} and Z are l.d.. Let us consider representatives of \tilde{X} and Z, which we call still \tilde{X} and Z, in a polydisk P around 0 and a holomorphic extension X of \tilde{X} . From Lemma 1 we have X(f) = g.f for some holomorphic function g. Let Y = X - g.Z. It is not difficult to prove the following facts:

- i) X and Z are l.d. on V if, and only if, Z and Y are l.d. on V.
- ii) Y(f) = 0, so that Y is a first integral of f. We need a Lemma.

Lemma 8. For $1 \leq i, j \leq m$ set $Y_{i,j} = f_j.e_i - f_i.e_j$. Let Y be a first integral of f. Then there exists a antisymetric matrix

$$A = (a_{i,j})_{1 < i < m}^{1 \le j \le m}$$
, where $a_{i,j} \in \mathcal{O}_m$

such that

$$Y = \sum_{i,j} a_{i,j}.Y_{i,j}$$

Proof. Let $\Omega = dx_1 \wedge \cdots \wedge dx_m$ and consider the n = m-1 form $\omega = i_Y(\Omega)$. We have $df \wedge \omega = df(Y) \cdot \Omega = 0$, and so De Rham's Theorem

implies that $\omega = df \wedge \theta$, where θ is a n-1 form. Set

$$\theta = \sum_{i,j=1}^{i,j=m} a_{i,j}.\alpha_{i,j},$$

where $\alpha_{i,j} = i_{e_j} i_{e_i}(\Omega)$ and $a_{i,j} = -a_{j,i}$. From $df \wedge \Omega = 0$ it is possible to prove that

$$d\!f \wedge i_{e_j} i_{e_i}(\Omega) = i_{Y_{i,j}}(\Omega)$$

so that

$$i_Y(\Omega) = df \wedge \theta = \sum_{i,j} a_{i,j}.i_{Y_{i,j}}(\Omega)$$

which implies the Lemma.

End of the proof of Lemma 7. Let Z,Y be such that Z(f) = f, Y(f) = 0, and $Y = \sum_{i,j} a_{i,j}.Y_{i,j}$, where $A = (a_{i,j})_{1 \le i \le m}^{1 \le j \le m}$. We will consider two cases.

1st case: m = n + 1 is even. Suppose first that the matrix $A(0) = (a_{i,j}(0))_{1 \le i \le m}^{1 \le j \le m}$ is non singular. In this case 0 is an isolated singularity for Y.

In fact

$$Y = \sum_{i=1}^{m} Y_i \cdot e_i = \sum_{i,j} a_{i,j} \cdot (f_j \cdot e_i - f_i \cdot e_j) \quad \Rightarrow \quad Y_i = 2 \cdot \sum_{j=1}^{m} a_{i,j} \cdot f_j$$

Since A(0) is non singular, then A(p) is non singular for p in a neighborhood B of 0. This implies that if $p \in B$ is a singularity of Y, then $f_1(p) = \cdots = f_m(p) = 0$, and so p = 0.

Now, it follows from Theorem 2 that D(Y, Z) contains a non constant holomorphic curve γ such that $\gamma(0) = 0$. It is enough to prove that $\gamma \subset V$. Let us prove this fact.

Since $\gamma \subset D(Y, Z)$ and 0 is an isolated singularity for Y, we have that for a small fixed $t \neq 0$ there exists $c \in \mathbb{C}$ such that:

$$Z_{\gamma(t)} = c.Y_{\gamma(t)} \quad \Rightarrow \quad f(\gamma(t)) = df_{\gamma(t)}.Z_{\gamma(t)} = c.df_{\gamma(t)}.Y_{\gamma(t)} = 0$$

so that $\gamma \subset V$, as we wished.

Now suppose that A(0) is singular. Suppose by contradiction that Y and Z are l.i. on V. Since m is even there exists a antisymetric matrix

 $K = (k_{i,j})_{1 \le i \le m}^{1 \le j \le m}$ such that for small $s \ne 0$ the matrix A(0) + s.K is non singular. We leave the proof of this fact for the reader. Set

$$Y_s = \sum_{i,j} (a_{i,j} + s.k_{i,j}).Y_{i,j} = Y + s.W$$

It follows from Lemma 6 that if s is small enough then Z and Y_s are l.i. on V. On the other hand this contradicts the fact that A(0) + s.K is non singular for $s \neq 0$. This contradiction implies that Z and Y are l.d. on V.

2nd case: m=n+1 is odd, say m=2k+1. In this case A(0) is singular because it is antisymetric. Let us suppose first that A(0) has rank m-1=2k. Fix a neighborhood B of 0 such that A(p) has rank 2k for any $p \in B$.

Consider the 2-vector $\Theta = \sum_{i,j} a_{i,j}.e_i \wedge e_j$. Since A(p) has rank 2k for any $p \in B$, the 2k-vector Θ^k does not vanishes on B. It follows that there exists a 1-form $\omega = \sum \omega_i \ dx_i$ such that

(2)
$$\Theta^k = \sum_{i=1}^m (-1)^{i+1} \omega_i \cdot e_1 \wedge \ldots \wedge e_{i-1} \wedge e_{i+1} \wedge \ldots \wedge e_m = i_\omega (e_1 \wedge \ldots \wedge e_m)$$

where ω does not vanishes on B.

Observe that ω and Θ satisfy the following properties:

$$(\mathbf{a})i_{\omega}(\Theta) = \sum_{i,j} a_{i,j}(\omega_i.e_j - \omega_j.e_i) = 2\sum_{i,j} a_{i,j}.\omega_i.e_j = 0.$$

$$(b)i_Y(\omega) = 0.$$

$$(c)i_{df}(\Theta) = -Y.$$

In fact, (c) follows from $Y = \sum_{i,j} a_{i,j} \cdot Y_{i,j}$. Let us prove (a). For any fixed $p \in B$ there is a base $\mathcal{V} = (v_1, \dots, v_{2k+1})$ of \mathbb{C}^m such that $\Theta = v_1 \wedge v_2 + \dots + v_{2k-1} \wedge v_{2k}$. Let $(\alpha_1, \dots, \alpha_{2k+1})$ be the dual basis of \mathcal{V} . We have $\Theta^k = k! \cdot v_1 \wedge \dots \wedge v_{2k}$. Since $v_1 \wedge \dots \wedge v_{2k+1} = \lambda \cdot e_1 \wedge \dots \wedge e_{2k+1}$, where $\lambda \neq 0$ we get from (2) that $\omega_p = c \cdot \alpha_{2k+1}$, where $c \neq 0$. This implies (a). It is easy to see that (a) implies (b). We leave the proof of this fact for the reader.

Now, since $\omega_0 \neq 0$ there exists a vector $e \in \mathbb{C}^m$ such that $\omega_0.e \neq 0$. By taking a smaller B, if necessary, we can suppose that $\omega_p.e \neq 0$ for all

 $p \in B$. Consider the analytic sets

$$E=\{p\in B\ ;\ Z(p)\wedge Y(p)\wedge e=0\}\ \text{ and }\ F=\{p\in B\ ;\ \omega_p.Z(p)=0\}$$

Observe that F has codimension one, E has dimension ≥ 2 (Theorem 2) and $0 \in E \cap F$. This implies that $\Sigma = E \cap F$ has dimension ≥ 1 , and $0 \in \Sigma$. Therefore Σ contains a non constant holomorphic curve γ such that $\gamma(0) = 0$. The following assertion will finish the proof:

Assertion - $\Sigma \subset V \cap D(Y, Z)$

Proof. Let $p \in \Sigma$. Since $Z(p) \wedge Y(p) \wedge e = 0$, it follows that there are $a, b, c \in \mathbb{C}$, not all zero, such that

$$a.Z(p) + b.Y(p) + c.e = 0 \tag{*}$$

Since $p \in F$ and $\omega_p.Y(p) = 0$, if we apply ω_p to (*) we get $c.\omega_p.e = 0 \Rightarrow c = 0$, so that a.Z(p) + b.Y(p) = 0, which implies that $p \in D(Y, Z)$. Suppose first that $a \neq 0$. In this case if we apply df_p to a.Z(p) + b.Y(p) = 0 we get $a.f(p) = a.df_p.Z(p) = 0$, and so $p \in V \cap D(Y, Z)$ as we wished.

Let us consider the case a = 0. In this case we must have Y(p) = 0. On the other hand (b) implies that:

$$i_{\omega}(e_1 \wedge \ldots \wedge e_m) = \Theta^k \implies i_{df}(i_{\omega}(e_1 \wedge \ldots \wedge e_m)) = -k.Y \wedge \Theta^{k-1}$$

The above relation implies that if Y(p)=0 then $df_p \wedge \omega_p=0$, and so $df_p=\alpha.\omega_p$. Hence $f(p)=df_p.Z(p)=\alpha.\omega_p.Z(p)=0$, because $p\in F$. Therefore $p\in V\cap D(Y,Z)$, as we wished.

Let us suppose now that the rank of A(0) is less than 2k. The proof is similar to that we have done in the case m even. Suppose by contradiction that Y and Z are l.i. on V. Since m is odd there exists a antisymetric matrix $K = (k_{i,j})_{1 \le i \le m}^{1 \le j \le m}$ such that for small $s \ne 0$ the matrix A(0) + s.K has rank 2k. We leave the proof of this fact for the reader. Set

$$Y_s = \sum_{i,j} (a_{i,j} + s.k_{i,j}).Y_{i,j} = Y + s.W$$

It follows from Lemma 6 that if s is small enough then Z and Y_s are l.i. on V. On the other hand this contradicts the fact that A(0) + s.K has rank 2k. This contradiction implies that Z and Y are l.d. on V. This ends the proof of Lemma 7.

End of the proof of Theorem 1.

Let $\tilde{X}, \tilde{Y} \in \chi_{V^*}$ and let us prove that they are l.d. on V. Suppose by contradiction that they are l.i. on V. Consider holomorphic extensions X and Y of \tilde{X} and \tilde{Y} respectively. We have X(f) = g.f and Y(f) = h.f. It follows from Lemma 7 that g(0) = 0 and h(0) = 0. Let Z be such that Z(f) = f. Lemma 6 implies that there exists $\epsilon > 0$ such that if $s \le \epsilon$ than $Y_s = Y + s.Z$ and X are l.i. on V. On the other hand $Y_s(f) = u.f$ where u = g + s, so that $u(0) = s \ne 0$. Hence Lemma 7 implies that $Y_s \in \mathcal{D}(V)$, which is a contradiction. This ends the proof of Theorem 1.

References

- [F] J.Frenkel, "Cohomologie non abélienne et espaces fibrés", Bul. Soc. Math. France 85 (1957), pp. 135-220.
- [G] R.C. Gunning, -"Introduction to holomorphic functions of several variables", vol. I, The Wadsworth & Brook/Cole Math. Series (1990).
- [M] R. Moussu, "Sur l'existence d'integrales premieres pour un germe de forme de Pfaff", Ann. Inst. Fourier 26,vol.2 (1976),pp.171-220.
- [S] K. Saito, "Quasihomogene isolierte Singularitaten von Hyperflachen", Invent. Math. 14 (1971), pp. 123-142.
- [Se] J. Seade, "On the topology of hypersurface singularities", preprint.

A. Lins Neto

Instituto de Matemática Pura e Aplicada Estrada Dona Castorina, 110 22460-320, Rio de Janeiro, Brasil E-Mail: alcides@impa.br